PHYSICAL PRINCIPLES OF THE THEORY CONCERNING
POLYMOLECULAR ADSORPTION FILMS AND CAPILLARY
CONDENSATION OF POLAR LIQUIDS

I. BASIC THERMODYNAMICS OF SORPTION FILMS OF POLAR LIQUIDS

V. A. Zagoruiko UDC 541.183:536.423.4

Analyzed are the general conditions of thermodynamic equilibrium in polymolecular adsorp-
tion films of polar liguids. Thermal equations of adsorption and a capillary condensation
are derived for systems with a developed interphase boundary.

1. General Conditions of Equilibrium in Polymolecular Adsorption Films. The existence of poly-
molecular films in thermodynamic equilibrium at the surface of a solid has been demonstrated in humerous
experimental and theoretical studies by B. V. Deryagin and his students [1-4]. An adsorption film of polar
liquid has a sharply defined interphase boundary with its vapor as well as with the bulk liguid and, there-
fore, formally may be treated as a separate phase [4], It differs from the bulk liguid in that it is located
in the potential field of the solid surface and, as a result, acquires a more ordered (oriented) structure.

If the adsorbent surface is regarded as an "extraneous wall" and its effect on the film is accounted for in
terms of the potential field of the surface, then the adsorption film together with its vapor can be viewed
as a thermodynamic system in a nonuniform external field.

When the field of the adsorbent surface is nonuniform, then the adsorbate molecules exist under un-
equal conditions and the equilibrium distribution of particles in the field, while their total number in the
system remains unchanged, follows the equation:

w T = const. (1)

Owing to the nonhomogeneous electrical topography of the adsorbent surface, polymolecular adsorp-
tion will ocecur in discrete domains of rather small dimensions (of the order of 10-7-107% cm). In films of
such small dimensions the thermodynamic potentials cease to be additive over the mass, becoming functions
of the film thickness and of the domain size. From a strictly phenomenological viewpoint, this situation
may be regarded as evidence of certain characteristics which distinguish an adsorption film from the bulk
liquid.

The thickness of an adsorption film and the dispersivity of the adsorbent can both vary over wide
ranges and, therefore, the applicability of the thermodynamic method to an analysis of adsorption films may
be limited. Gibbs' fundamental adsorption equation [5], which relates the variations in surface tension in
the chemical potential of a film to its thickness, remains valid for a plane interphase boundary until the
system has become completely homogenized [6], inasmuch as all parameters in this equation do not depend
on the location of this interphase boundary. In the case of very curved interphase boundaries the tension
surface may degenerate and the surface tension of the film will then depend on their location. As has been-
shown in [6, 7], the thermodynamic (quasithermodynamic) method, which vields not only good qualitative
but also quantitative results, may be applied to an analysis of thin objects like films. If the equimolecular
interface is regarded as the geometrical boundary, then variations in surface tension will correspond to
actual variations in the interface curvature and in the film thickness [8].

With all this in mind, we will now analyze the conditions of mechanical equilibrium in a single-com-
ponent two-phase system: a polymer adsorption film (") and its vapor ("). We will assume that the
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adsorbent does not react chemically with the film, dissolves neither in
the film nor in the surface layer, and constitutes part of the shell which
contains the system. Let the system be thermally insulated and me-
chanically isolated from the ambient medium. If the sum of the mass
of both phases remains constant, then the internal energy of the system
will also be constant. This internal energy will represent here the
thermodynamic potential. The equilibrium condition, which implies
that all possible work of the system is equal to zero (the energy of the
system is minimum) can be written as

8U = U’ 4- 8U”+ 8Up = 0. )

Inasmuch as the system is under the influence of a nonuniform external
field and the interphase boundary can generally have various curvatures,

T ‘ Eq. (2) will now be rewritten in integral form. Since for a small part
Fig. 1. Vapor equilibrium of the system
P—T diagram, AU = TdS —PdV + (w -~ Iy dN + odF, (3)
hence
8U'= | T8 (dS') — ] p'8 (@V") -+ [ W (@dN") + [ 11’8 (dN"), (4)
8U" = [T6(dS"y— [ p"8 (dV") -+ fn"d (dN") - [ IT"6 (dN"), (4b)
8Us = § 6 (dF). ' (4c)

Integral (4c) with respect to the interphase boundary area may vary due to a variation either in the
boundary shape or in its size. Therefore, the total possible variation of Up is

8Ur = 8§ odF = {08 (dF) + | 8adF. (5)

Furthermore, the integrals with respect to potential energy may vary due to either a variation in the
magnitude of the masses or a variation in the location of constant masses in the potential field

O IMdN'—  I'S(@N') + [8ITaN, (62)

S [ II"dV" = { IIS(dN") + § SH"dN". (6b)

A simultaneous solution of Eqs. (2), (4), (5), (6) and the additional conditions of constant entropy,
constant volume, and constant mass of the total system will yield the following conditions of equilibrium
between an adsorption film and its vapor:

T’'=T"= T= const, (7a)

WA I = p’ 4 "= p,= const, (7b)
1 1 do

pP_pl=cf{—+—|+—. (7c)
( Ry R, ) on

2. Thermodynamic Parameters of an Adsorption Film. All quantities in expressions (7b), (7c) are
functions of the film thickness h, all other conditions remaining unchanged. Let us differentiate these
quantities with respect to h, with T = const. Considering that /8P = v, we have

g 0P o oP (82)
oh oh on’
L aP" oI _ 9—5 (Sb)
“om T om " Ton
o _om_ (L, Ly %] 60
oh  on  on R Ry om

A simultaneous solution of these equations and a subsequent integration from = to h yields (the vapor
assumed a nearly ideal gas):
(4

I v 06
P=pPyexp|L 1Y (co 4 2],
sexP[kT kT( ot an)] (92)

186



P~ P 4 <Co' + .g.‘i) , (9b)

/{2
H/_-— ” v
Pl=P, exp[ 1 -+ v (CG - 9.0_)] , 9c)

kT kT on
where C = 1/R; + 1/R,.

From the equilibrium conditions (7) one can derive the Clapeyron—Clausius equation, which will relate
the heat of phase transformation, the jump in specific volume and in pressure, and the slope of the equili~
brium curve at the transition point. Transition from one equilibrium state to a state infinitesimally close
to equilibrium occurs in accordance with the following relations:

dH,(P,, T) +dH/ZdMH(P”, T) -.L'd //’ (10&)
dP'— d4P" — d(Ccr n 33) .
on (10b)
For a variation in the chemical potential we have

dp = — 8dT - vdP. (11)

Considering that (S"—S8'")T = 7 and solving (10), (11) simultaneously, we obtain

d do
y M T |T—I0" 4+ (Ccr + —q)]

apr T gr [ i an | | (12)

ar — T @"—v)

Expression (12) is the Clapeyron—Clausius equation, extended to two~phase systems with a developed
interphase boundary. Curve ab denoting the equilibrium between an adsorption film and its vapor on the
P—T diagram (Fig. 1) is shifted here upward from its position for the bulk liguid and its vapor (curve a'b")
50 that the phase-transformation temperature for the surface phase T lies below the phase-transformation
temperature for the bulk liquid T; under the same pressure, This drop in the phase-transformation tem-
perature (Fig. 1) is

AT =T,—T = (P"—P,) tga. (13)
Owing to the small curvature of line a'b', one may let
ctoa ~ s
go o~ ar (14)

Treating the vapor as an ideal gas, approximately, and disregarding Pv' < kT, we obtain

P
ctga = ﬁn; . (15)

A simultaneous solution of Egs. (9¢) and (15) yields the expression

kT2 (. I —Ir 4 0o
AT =—_le — 1 C —_ — 14,
ns{xp{ AT +kT(“+an)] | (16)

The differential heat of phase-transformation for systems with a developed interphase boundary is
not equal to the corresponding value ng for the bulk ligquid. In order to determine 7(P", T), we differentiate
the complete derivative

d 0o d Py
— v |Co +' =+ T —11" | = —{ kT In
dT[ ( Jran)T } dT( )

g
with respect to P and T, then insert into (12). After necessary operations, we obtain

I

n=n—(—T) kTIn 2

(17)
8
The differential heat of adsorption can be easily found from expression (17). Noting that for an ideal
gas S—S8" = kln (P"/P), we have

A=(S8—8)T =n—1"=n1,+ kT n };* + o kT® In 1; . (18)
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Fig. 2. Schematic diagram
of an equivalent sorbent capil-
lary.

Capillary effects of the second kind, which appear when the film dimensions are small, cause the
surface tension to depend on the film geometry. In order to determine ¢, we will use the equilibrium con-
dition (7c¢) and the well known differential equation in [9] relating the surface tension ¢, the difference
between the phase pressures P'—P", and the nominal thickness of the transition layer 6

" 0o ] Y (19)
AP —P" ir

In order to render the problem determinate, we let C = 2/R. If 6 <¥R, then 6 may be agsumed in-
dependent of R, to the first approximation, and equal to 6g for the bulk liquid [8]. At a constant tempera-~
ture 6g = constant. Differentiating Eq. (7c) with the temperature constant along the normal n yields

GP'—P) _ 3 (36_ ﬁ\). (20)

om o \R  on

A simultaneous solution of (19) and (20) for the boundary conditions
do

Glh=0 = 0: U}h:w = Oy =4y,
On |peo
yields
_(?g:_l__[cw_o_ { 1 +£§_)J’
oo "R
or
T T e

1 2 0o 1 2
0 = exp [-—5‘ (—6——1—?) dn“—a—jvexp [5(—6— + ?) dn] dan —I—Cl}. (22)
The solution to Eq. (22) with these boundary conditions yields the following expressions for the sur-
face tension ¢ as a function of the curvature radius R and of the film thickness h = n-cosoa.

B (] ) (2

0=0= R R 2 on R
3 R, 1 (GRY_ 1 L¥R] ..

exp | M2 [ n\OR 1 &R
“p[ 5 R (R)(an 3 "o

R 26_3@_...‘>M.'..]}
T 15" ons .
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For thin films R > h, and for thick films the entire exponential term tends to zero. Therefore, re-
taining only the first two terms in the exponent will be sufficiently accurate. Then, with the terms of higher-
order smallness omitted, we have

26 —h 26
- & 1 = . (24
0=0= {1 R oxp Scosa ( + Rﬂ @4)

Equation (24) is analogous to the closed Gibbs—Tolman—Koenig—Baff equation [8] derived for small
droplets or bubbles, except that its exponential term accounts also for capillary effects of the second kind
agsociated with thin films (small values of h) {10].

3. General Equations of Adsorption and Capillary Condensation. Expression (9a) can, with the aid
of (21), be rewritten as

prinfe -2
P 5

(6. — 0). 25)

Equation (25) is the thermal equation of adsorption, extended to systems with a developed interphase
boundary. If capillary effects are disregarded, then the second term on the right-hand side of (25) becomes
zero and we have the conventional Polani equation of adsorption [11]. An analysis of (25) shows that, under
certain conditions (for example, for the adsorption of polar molecules), the right-hand side of Eq. (25) be-
comes zero at a finite thickness h; of the adsorption film, which has been confirmed experimentally by
several authors [3, 12, 13]. For this condition of equilibrium between a polymolecular adsorption film
and its saturated vapor (saturated relative to the bulk liquid) Py is determined from (25)

’

By l’a— ©. — o). (26)

In the majority of hygroscopic materials over a wide range of moisture level, characteristically, the
processes of adsorption and capillary condensation occur simultaneously, which significantly reduces the
applicability of Eq. (25). The applicability of the Kelvin—Thompson equation of capillary condensation
becomes limited for the same reason, as has been confirmed in many experimental and theoretical studies
[14-16].

The effect of polymolecular adsorption films on capillary condensation in wide pores has been ex-
plored thoroughly enough by B. V. Deryagin [17, 18], where he has shown that the hydraulic radius of an
equivalent pore at the meniscus level is equal tothe thickness of the adsorption film plus the thickness of the
variable-curvature transition layer plus the thickness of the constant-curvature capillary condensate layer
{Fig. 2). Such a model of sorption phenomenon is characteristic of wide pores, where the effective ranges
of surface forces on opposite walls do not overlap. In harrow pores the adsorption potentials overlap and
the total potential at the pore axis is not zero, inasmuch as the dispersion forces are adding here. A con-
stant-curvature region of capillary condensate, with parameter values other than the corresponding para-
meter values for the bulk liquid, may be missing in narrow pores.

On this basis, then, we will examine the general conditions of equilibrium between the adsorption
film and its vapor, assuming that there is no capillary condensate present in narrow pores. For simpli-
city, we will consider a single capillary (Fig. 2) whose wall length and wall slope are determined by the
total volume of pores in a given sorbent. The free energy of the sorbed liquid {we assume that the constant-
curvature meniscus exists) is

F = oF + 0y(F*— F) 4 [ -N,- W+ s0,+ F,. @7)

By analogy with [18], we consider the virtual desorption of dW, moles at p = const. and h = const.
(the entire shaded area in Fig. 2) by isothermal reversible distillation into the bulk liquid under pressure
Pg. We then have

— (g— 1) NodW = (0 — @g) dF + N,f AW+ o ds. (28)
The walls of the equivalent capillary slope only slightly, and it may be assumed that they remain
parallel within every cross section at the meniscus level. Then ds = 0 and
{ H \ aF
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Furthermore, by definition

30
fc: We— Ps- (30)
With (29) and (30), expression (28) becomes
B iy oo (31)
2 He = Bp

For determining w we use B. V. Deryagin’'s generalization of the chemical potential of a layer [4]:

gy E_Oi — 32
B oh l“‘p' ( )

In the general case, the boundary surface between an adsorption film and its vapor is curved and,
therefore, p' = pg. The value of u' can be found from the equilibrium condition (7b). Solving simultane-
ously (32) and (7b) yields, after integration, ’

& A
W =, — S (Pv,”'!"p) dh = wy-} fﬂ’dh. (33)

Considering that
0= 0y+ 0,050, (34)

and inserting (33) as well as (34) into (31), we obtain the correct equation of capillary condensation for sy-
stems with a developed interphase boundary:

n
v'6,c0s 0, -—j W —pp)dh 5)

A
2 Be—Hp

Equation (35) applies to pores of any width. With the adsorption potential disregarded here, (35) be-
comes the simple Kelvin—Thompson equation. For sufficiently wide flat pores (where the effective ranges
of forces on opposite walls do not overlap) one may assume that u' = i = g, and (35) becomes the Deryagin
equation. In both cases the limiting width of an equivalent capillary tends to infinity, The physical pattern
is different during sorption in narrow capillaries. Assuming that p, =p'and using relation (7b), for example,
we thus obtain

h

V' 0oC08 O -+ j‘ I’dh

=h— (36)

R
2 i

For sorbed molecules with high potential energies (for sorption of polar molecules by a fine dis-
persion) the limiting value Hy (as well as the limiting thickness h; of the adsorption film) becomes finite
and dependent on the temperature, on the kind of sorbent, and on the kind of sorbate material. The fact
may explain the temperature dependence of the maximum moisture content, established in many experi-
ments during the sorption of water.

NOTATION

is the potential energy of a molecule in the field of surface forces;
is the chemical potential of a molecule;

is the chemical potential of vapor at pressure P;

is the internal energy;

is the free energy;

is the entropy;

is the volume;

is the pressure;

is the temperature;

is the surface tension of adsorption film, referred to the film~vapor interphase boundary;
is the surface tension of film of infinite thickness;

is the surface area;

X

e gde v o

Q
hjs
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=
*

is the total surface area of sorbent;

are the principal radii of the film-vapor interface;

is the normal to the surface;

is the angle between a normal to the interface and the z-axis;

is the thickness of adsorption film;

is the volume per molecule;

is the molar volume;

is the Boltzmann constant;

is the Avogadro number;

is the heat of phase transformation;

is the heat of adsorption;

is the true volume expansivity of adsorption film;

is the nominal thickness of transition layer, referred to the density of adsorption film;

is the excess free energy per unit area of interphase boundary between sorbent (including the
adsorption film) and vapor at pressure P [18];

is the excess free energy per unit area of interphase boundary between sorbent and capillary
condensate;

is the excess of bulk free energy (exclusive of wgy) of capillary condensate;

is the quantity of sorbed liquid, in moles;

is the total surface area of menisci;

is the width of equivalent pore at the meniscus level;

is the critical wetting angle.

=
&

RS IR I

[=S

g oR »3
o

&

Subscripts

refers to bulk liquid;

refers to capillary condensate;
(") refers to adsorption film;

(") refers to vapor.
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